Home | Sitemap | Login

   

Scientific Articles/Reports, Newsletters and Press Releases

Title: The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change
Date: 04-Oct-2012
Category: Research Paper
Source/Author: Global Change Biology
Description: Paper by Zhaosheng Fan1,*, A. David McGuire2, Merritt R. Turetsky3, Jennifer W. Harden4, J. Michael Waddington5, Evan S. Kane6

Library: http://onlinelibrary.wiley.com/doi/10.1111/gcb.12041/abstract

Keywords:

  • Methane;
  • soil CO2 flux;
  • peatland;
  • fen;
  • boreal;
  • climate change;
  • carbon;
  • model

 

Abstract

It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005 – 2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061 the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

© 2012 Blackwell Publishing Ltd



[ Back ] [ Print Friendly ]