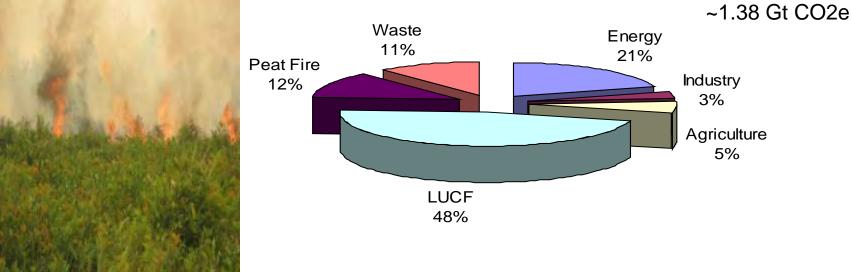
METHODOLOGY FOR CARBON MEASUREMENT IN BURNED PEAT

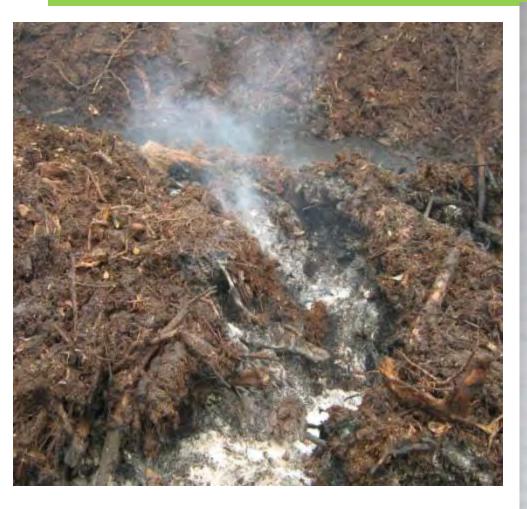
LAILAN SYAUFINA

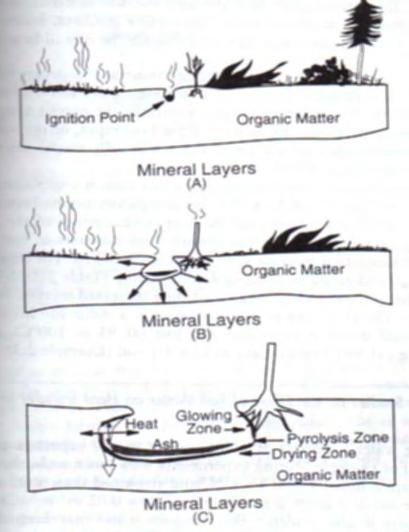
FACULTY OF FORESTRY IPB 2010


A paper presented in the Workshop on Options for Carbon Financing to Support Peatland Management, 4-6 October 2010, Pekanbaru, Riau Province, INDONESIA

OUTLINE

- INTRODUCTION • PEAT FIRF METHODOLOGY OF CARBON MEASUREMENT IN BURNED PEAT ESTIMATION OF C EMISSION FROM FOREST AND LAND FIRES (A CASE STUDY)
- CLOSING REMARKS


INTRODUCTION


	CO2 emission	CO2 removal	CH4	N2O	PFC	CO2e
Energy	247,522		1,437	10		280,938
Industry	40,342		104	0.43	0.02	42,815
Agriculture	2,178		2,419	72		75,420
LUCF	1,060,766	411,593	3	0.08		649,254
Peat Fire*	172,000					172,000
Waste	1,662		7,294	8		157,328
TOTAL	1,524,472	411,593	236,388	28,341		1,377,754

Sumber : Second National Communication 2009

PEAT FIRE

source : BPLHD kALTENG

METHODOLOGY OF CARBON EMISSION MEASUREMENT FROM BURNING PEAT

- Emission of above ground biomass
- Emission of under ground biomass

Above ground biomass emission (Seiler and Crutzen, 1980)

• **M** = **A**. **B**. **a**. **b**

Where :

- M : Burned biomass total in an ecosystem (ton/year);
- A : Yearly burned area (hectare/year);
- B : Biomass density (ton/ha);
- a : above ground biomass fraction; and
- b: burned above ground biomass fraction



Under ground biomass emission

• M = A.B.E

Where :

- M : Burned biomass in an ecosystem (ton/year);
- A : Yearly burned area (hectare/year);
- B : Biomass density (ton/ha);
- E : Burning Efficiency

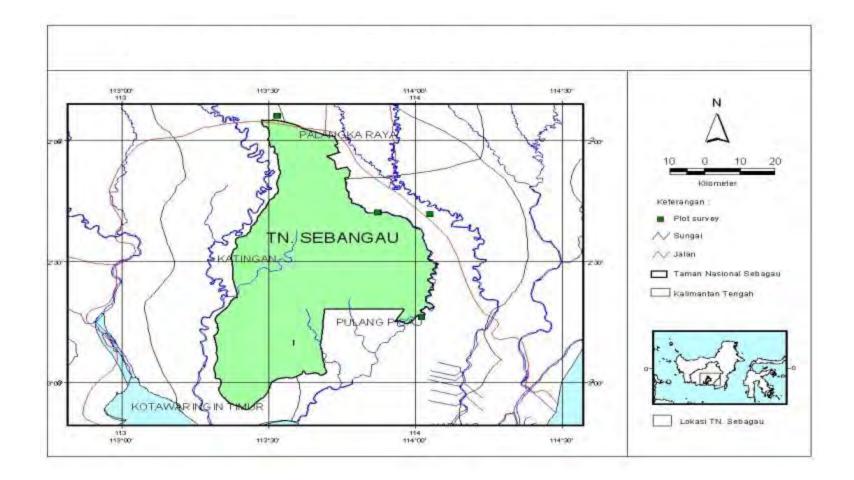
Biomass burning parameter

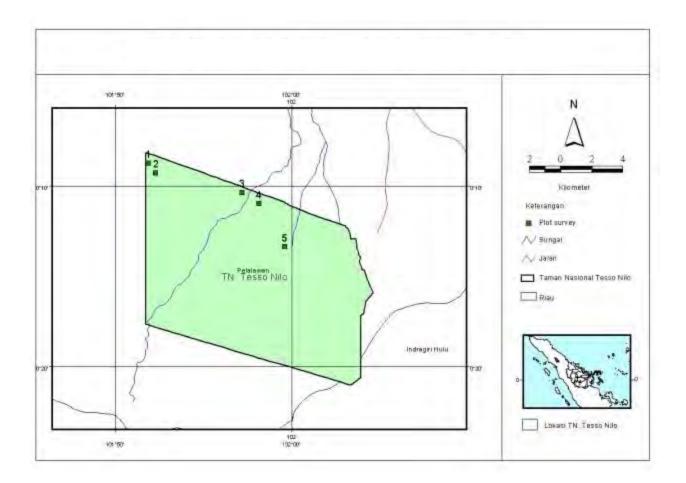
Ecosystem	Yearly burned area (x 10 ⁶ ha)	Biomass density (ton/ha)	Burned biomass fraction
Savanna	650	6	0.8 - 1.0
Tropical forest	12	50 - 330	0.20 – 0.25
Boreal forest	8		
Above ground vegetation		40 - 60	0.20 – 0.30
Organic soil		20 - 500	0.1 - 0.90

Source : summarized by Levine and Coffer (2000)

TINGKAT KEPARAHAN KEBAKARAN (FIRE SEVERITY)

- Peat fire classification(Artsybashev 1984)
- 1) Low fire severity: burned peat depth up to 25 cm
- 2) <u>Moderate fire severity</u>: burned peat depth from 25 to 50 cm
- 3) <u>High fire severity</u>: burned peat depth more than 50 cm




Estimation of Carbon emission from forest and land fires (A case study of CCROM IPB-WWF, 2009)

- Location:
 - Peatland area : Sebangau National Park (Central Kalimantan)
 - Non peatland area : Tesso Nilo National Park (Riau)

Sebangau National Park, Central Kalimantan

Tesso Nilo National Park, Riau Province

Fire condition in Sebangau

• Moderate fire severity

- Low fire severity
- Ground fire and surface fire types

Fire condition in Tesso Nilo

Low fire severity

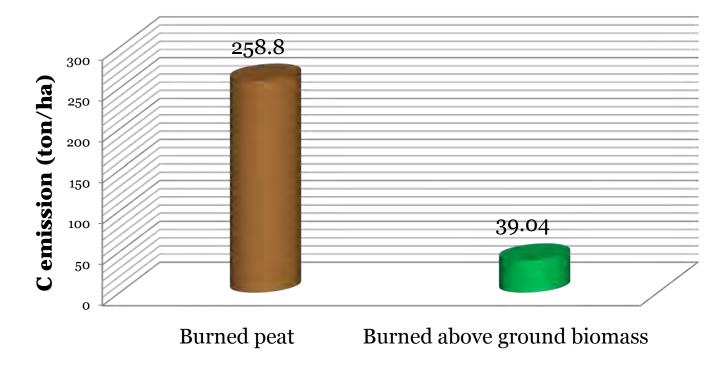
Moderate fire severity

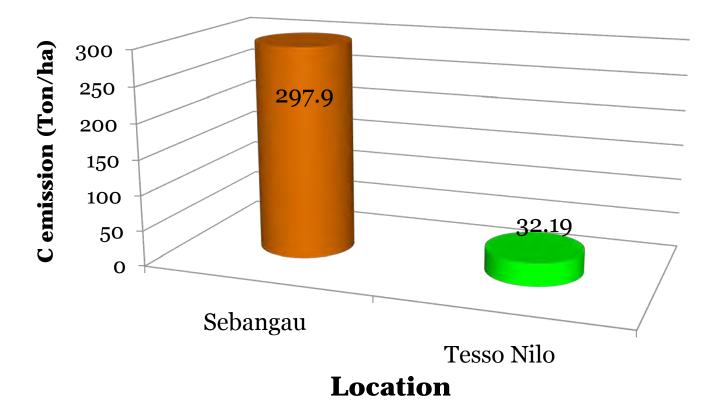
• Surface fire type

Methodology

- Sample plots (systematic purposive random sampling)
 - Sebangau : 72 plots of 0.1 ha size in burned and unburned areas
 - Tesso Nilo : 30 plots of 0.1 ha size in burned and unburned areas

Parameter measured:


- Fuel load (above and underground biomass)
- Vegetation analyses
- Water level
- Moisture content
- Fire severity



Results

 Comparison C emission in burned peat and burned above ground biomass in Sebangau

Results

22

Comparison of C emission in Sebangau and Tesso Nilo NPs

CLOSING REMARKS

- Various methods of measurement and calculation of GHG have been developed, whether by field work and or biomass estimation calculation
- Factors need to be considered in carbon emission from burned peat, incl: *fire type, fire severity, biomass fraction and burning efficiency*
- C emission from peat is 6.6 times larger than that of above ground biomass
- C emission from peatland is 9.2 times greater than that of non peatland area

